
Allbridge Soroban Bridge

Stellar Audit Bank

Reference 24-01-1500-REP
Version 1.2

Date 22/02/2024

Quarkslab SAS
10 boulevard Haussmann

75009 Paris
France

1. Project Information

Document history
Version Date Details Authors

1.0 02/02/2024 Initial version Madigan Lebreton
Elouan Wauquier

1.1 05/02/2024 Erratum Madigan Lebreton
Elouan Wauquier

1.2 22/02/2024 Fixes review Madigan Lebreton

Quarkslab
Contact Role Contact Address

Pauline Sauder Project Manager psauder@quarkslab.com

Stavia Salomon Sales ssalomon@quarkslab.com

Mathieu Robert Director of Consulting mrobert@quarkslab.com

Allbridge
Contact Role Contact Address

Yuriy Savchenko N/A ys@allbridge.io

Ref.: 24-01-1500-REP 1 Quarkslab SAS

Contents

1 Project Information 1

2 Executive Summary 4
2.1 Context . 4
2.2 Objectives . 4
2.3 Methodology . 4
2.4 Disclaimer . 4
2.5 Findings Summary . 4
2.6 Recommendations . 5
2.7 Fixes . 6

3 Manual Review 7
3.1 Compilation . 7
3.2 Bridge . 7

3.2.1 Purpose . 7
3.2.2 Storage . 7
3.2.3 Permissioned functionality . 8
3.2.4 Permissionless functionality . 9
3.2.5 Authorization framework attack vector . 9

3.3 Messenger . 11
3.3.1 Purpose . 11
3.3.2 Storage . 12
3.3.3 Permissioned functionality . 12
3.3.4 Permissionless functionality . 13

3.4 Gas oracle . 14
3.4.1 Purpose . 14
3.4.2 Storage . 14
3.4.3 Permissioned functionality . 15
3.4.4 Permissionless functionality . 16

3.5 Pool . 16
3.5.1 Purpose . 16
3.5.2 Storage analysis . 16
3.5.3 Contract initialization . 16
3.5.4 Liquidity providing mechanism . 17
3.5.5 Swapping mechanism . 18
3.5.6 Administration functionalities . 19
3.5.7 View functionalities . 21

A Smart contract interface 22
A.1 Host functions (import section) . 22
A.2 Exposed functions (export section) . 24

B Proposed fixes 27
B.1 Bridge - Insecure pattern . 27

Ref.: 24-01-1500-REP 2 Quarkslab SAS

B.2 Pool - Percentage input sanitization . 27

Ref.: 24-01-1500-REP 3 Quarkslab SAS

2. Executive Summary

2.1 Context

This report presents the work of the collaboration between Allbridge and Quarkslab, as defined
in 24-01-1474-PRO. Quarkslab’s objective was to conduct a security assessment of four (4) smart
contracts for a Soroban bridge.

The audit parameter was defined by the content of the following GitHub repository: allbridge-
io/allbridge-core-soroban-contracts at commit f9f56b0f8cdd5ad4d3aa63929c4294aaf264535d.

The fixes review was based on the content of the following GitHub repository: allbridge-
io/allbridge-core-soroban-contracts at commit 7638b99b72a1e29a84abb463c62e3b4d0e06c985.

2.2 Objectives

The purpose was to discover potential security misconfigurations, weaknesses, and vulnerabilities
that can be leveraged or exploited by attackers being able to interact directly with the bridge.
To that end, Quarkslab proposed the following approach:

2.3 Methodology

1. Discovery and set-up phase;
2. Manual code review;
3. Testing;
4. Report, Audit and Project Management.

2.4 Disclaimer

This report reflects the work and results obtained within the duration of the audit for the
specified scope in 24-01-1474-PRO as agreed between Allbridge and Quarkslab. Tests are not
guaranteed to be exhaustive and the report does not ensure that the application is bug-free.

2.5 Findings Summary

Based on the aforementioned approach, one (1) vulnerability with medium severity ranking was
identified during Quarkslab’s assessment, as well as one (1) lower severity issue. The report
describes the attack surface and items which were assessed, as well as recommendations on how
to fix the above-mentioned vulnerabilities.

ID Name Perimeter
MED-1 Admin can drain stablecoin liquidity Pool (set_bridge)

Ref.: 24-01-1500-REP 4 Quarkslab SAS

https://github.com/allbridge-io/allbridge-core-soroban-contracts
https://github.com/allbridge-io/allbridge-core-soroban-contracts
https://github.com/allbridge-io/allbridge-core-soroban-contracts/tree/f9f56b0f8cdd5ad4d3aa63929c4294aaf264535d
https://github.com/allbridge-io/allbridge-core-soroban-contracts
https://github.com/allbridge-io/allbridge-core-soroban-contracts
https://github.com/allbridge-io/allbridge-core-soroban-contracts/tree/7638b99b72a1e29a84abb463c62e3b4d0e06c985

LOW-1 Lack of input sanitization in admin functions Pool (setters)
INFO-1 Tests reproduce the code logic Tests
INFO-2 Bridge implements an insecure pattern Bridge

(swap_and_bridge)
INFO-3 Superfluous storage DataKey::ReceivedMessage . Messenger
INFO-4 Unused variant DataKey::Admin . Gas oracle
INFO-5 Admin fees seem to be incorrect Pool (initialize)
INFO-6 Multiple casting from u128 to i128 Pool (deposit)

Severity: critical, high, medium, low, info

2.6 Recommendations

ID Recommendations Perimeter
MED-1 There are several ways to mitigate this issue.

For example, a consensus mechanism would limit the
amount of trust in the admin. Enforcing a grace period
when updating critical parameters gives time to users and
developers to react in case of compromise.

Pool (set_bridge)

LOW-1 Percentage parameters should be lower than or equal to
Pool::BP .

Pool (setters)

INFO-1 Replace computations in test cases with constants whenever
possible.

Tests

INFO-2 Consider checking that a Pool contract is associated to the
input token address before calling this address.

Bridge
(swap_and_bridge)

INFO-3 Remove the dead code. Messenger
INFO-4 Remove the dead code and simplify the resulting DataKey

enum (single variant).
Gas oracle

INFO-5 Verify that the default admin_fee_share_bp value config-
ured in the Makefile is correct.

Pool (initialize)

INFO-6 Consider checking for overflow/underflow when casting op-
erations are performed.

Pool (deposit)

Severity: critical, high, medium, low, info

Ref.: 24-01-1500-REP 5 Quarkslab SAS

2.7 Fixes

On the 2024/02/22, Quarkslab reviewed the fixes implemented following the reported vulnera-
bilities.

ID Name Fix status
MED-1 Admin can drain stablecoin liquidity ∼
LOW-1 Lack of input sanitization in admin functions 3

INFO-1 Tests reproduce the code logic 3

INFO-2 Bridge implements an insecure pattern 3

INFO-3 Superfluous storage DataKey::ReceivedMessage . 3

INFO-4 Unused variant DataKey::Admin . 3

INFO-5 Admin fees seem to be incorrect 7

INFO-6 Multiple casting from u128 to i128 3

Severity: critical, high, medium, low, info

Allbridge plans to migrate the Admin role to a DAO smart contract as part of the
2024 timeline.
Once implemented, this DAO structure will mitigate the MED-1 issue.

The initialized value reported in INFO-5 hasn’t been modified.
This potentially incorrect value can be fixed once deployed through the
set_admin_fee_share function.

Ref.: 24-01-1500-REP 6 Quarkslab SAS

3. Manual Review
In Soroban, smart contracts are WebAssembly modules with a specific structure. In their

import section, they specify the host functions they need. In their export section, they specify
which functions can be called by users and other smart contracts.

We used the following command to get an overview of the smart contracts’ attack surface:

$ wasm-objdump -j import --details target/wasm32-unknown-unknown/release/*.wasm
$ wasm-objdump -j export --details target/wasm32-unknown-unknown/release/*.wasm

A summary is available in Appendix A.

3.1 Compilation

We compiled the project using Rust 1.74 and the wasm32-unknown-unknown target.

INFO INFO-1 Tests reproduce the code logic

Perimeter Tests

Description

When testing a functionality, tests compute values the same way as the smart contract. If
there is a bug in the smart contract, it will be reproduced in the test case and won’t be caught.
See for example the computation of expected_fee in tests/src/messenger.rs .

Recommendation

Replace computations in test cases with constants whenever possible.

3.2 Bridge

3.2.1 Purpose
The goal is to let users send tokens to another chain’s bridge, receive tokens from another chain’s
bridge, or balance the available tokens in case they are not bridged uniformally.

Internally, the bridge swaps to and from a virtual stablecoin (named vUSD) to transfer the
tokens from one chain to another.

3.2.2 Storage
The bridge smart contract stores the state of current and past transfers.

At the Instance level, it remembers the following data:

• the address of the administrator, with the symbol symbol_short!("Admin");

Ref.: 24-01-1500-REP 7 Quarkslab SAS

• the address of the stop authority, with the symbol symbol_short!("StopAuth");
• the address of the gas oracle, with the symbol symbol_short!("GasOrclAd");
• the address of the native token, with the symbol symbol_short!("NatvTknAd");
• and its config as Bridge, with the symbol symbol_short!("Config").

The configuration contains the address of the messenger smart contract, as well as the address
of a designated rebalancer (which is exempt from fees). It also contains the addresses of vUSD
pools for each supported token, as well as conversion factors handling the different decimals of
each token. Finally, it has a field named can_swap that can pause the smart contract’s operations
in case of an emergency.

Some Instance-level fields are frozen and cannot be modified after initialization.
They include the admin address and the native token.

At the Persistent level, it stores the address of bridges on other chains, as well as the tokens
they support in DataKey::OtherBridge(chain_id). It also stores the hash of the messages it sent
and processed.

Persistent and Instance level storage entries cannot appear in the transaction’s
footprint if they are expired. This ensures expired entries cannot be exploited.

3.2.3 Permissioned functionality
The initialize method can be called only when the “Config” field in Instance storage is not
set. Since the TTL of the contract instance and all globals are tied together, there is no risk of
this field expiring before the contract instance.

It configures the main smart contracts the bridge interacts with (gas oracle, messenger,
native token) and sets the admin’s address. The pools are configured separately by the admin.

The initialize method should be called first, and the contract should not be called
unless a trusted party has called this function successfully.

Most permissioned methods are straightforward, checking that either the configured admin
or stop authority (when appropriate) authorized the transaction before modifying the corre-
sponding configuration.

add_bridge_token and remove_bridge_token let the admin configure which tokens are sup-
ported on other chains’ bridge.

register_bridge lets the admin register or modify the address of other chains’ bridge.

add_pool lets the admin register a vUSD pool for a given token and computes the relevant
conversion factors for the gas oracle and the bridge based on the token’s decimals.

start_swap and stop_swap let the stop authority pause or resume the smart contract.

Ref.: 24-01-1500-REP 8 Quarkslab SAS

The stop authority is set by the admin in set_stop_authority, as well as the gas oracle, gas
usage, messenger and rebalancer in their respective methods.

Finally, the admin can withdraw any token to an address it controls using withdraw_bridging_fee_in_tokens,
and the native token using withdraw_gas_tokens.

3.2.4 Permissionless functionality
Users can perform three main actions on the bridge, gated by the can_swap flag:

• sending tokens,
• receiving tokens, and
• balancing the pools.

To balance pools, they call the swap method. The bridge then atomically calls the two
relevant pools to first swap the sent token to vUSD, then to the received token. The authorized
tokens and the pools are all configured and whitelisted by the admin, which is considered trusted.

When bridging tokens, this operation is split across both chains. The user sends tokens using
the swap_and_bridge method, waits for the bridge to sign their message, then receives them when
the receive_tokens method is called on the other chain.

The swap_and_bridge method performs the first half of the operation, swapping the sent
token minus a fee to vUSD using the configured pool. The fee is transferred to the bridge while
the pool handles the vUSD swap. Once the swap is complete, the bridge builds a message by
hashing its components, and stores it as sent to avoid sending it multiple times. It then sends
it to the messenger.

On the reception side, the receive_tokens method performs the second half of the operation.
It rebuilds the message hash from its constituents and checks that the messenger on its chain
received the signed message and did not already process it. It then performs a swap from vUSD
to the target token using the configured pool and reimburses the extra gas to the recipient.

3.2.5 Authorization framework attack vector
The current implementation of the bridge uses an insecure pattern when swap_and_bridge is
called. Indeed, the token contract passed as an input argument is called (in convert_bridging_fee_in_tokens_to_native_token)
before checking if a pool is associated to this token (in send_and_swap_to_v_usd).

Due to the Soroban Authorization Framework and the call to an unverified external contract,
an attack vector is available.

We were not able to build a successful exploit of the attack vector described in
the following section. However, we decided to describe this attack vector which is
specific to the Soroban environment. Moreover, as the current implementation of
the bridge allows this attack vector, the bridge may be vulnerable to an exploit if
misconfigurations or upgrades are made.

Ref.: 24-01-1500-REP 9 Quarkslab SAS

The Soroban Authorization framework is designed in such a way that a user or a contract
authorizes the call it makes and all the associated subcalls. Figure 3.1 explains this behavior.

Figure 3.1: Authorization framework behavior

The bridge’s current implementation makes users pass the token contract as an argument
of the swap_and_bridge function. If this is a legit call, the interaction with the Pool contract
illustrated in Figure 3.2 will occur.

Figure 3.2: Legit swap

An attacker may pass a malicious contract as the token contract argument. As explained
at the beginning of the section, this contract is called before being checked. The following
interaction may occur.

Fortunately, the transaction reverts when the Pool contract address is retrieved from the
user-controller token contract address.

Ref.: 24-01-1500-REP 10 Quarkslab SAS

Figure 3.3: Pool access control bypass

INFO INFO-2 Bridge implements an insecure pattern

Perimeter Bridge (swap_and_bridge)

Description

The current implementation of swap_and_bridge checks that a Pool contract is associated
to the user-controlled token address argument after calling this address.

Recommendation

Consider checking that a Pool contract is associated to the input token address before calling
this address.

A patch addressing the issue by checking the associated pool address before any other oper-
ation. It is available in Appendix B.1.

3.3 Messenger

3.3.1 Purpose
The goal is to check that messages are valid and signed by the validators, and store them for
the bridge to process.

Ref.: 24-01-1500-REP 11 Quarkslab SAS

3.3.2 Storage
The messenger smart contract stores the message hashes it sends and receives.

At the Instance level, it remembers the following data:

• the address of the administrator, with the symbol symbol_short!("Admin");
• the address of the gas oracle, with the symbol symbol_short!("GasOrclAd");
• the address of the native token, with the symbol symbol_short!("NatvTknAd");
• the gas usage for each supported chain, with the symbol symbol_short!("GasUsage");
• and its Config, with the symbol symbol_short!("Config").

The Config contains the current chain’s id (should be 7), a list of supported chain ids, the
public key of the primary validator, and those of the secondary validators.

Some Instance-level fields are frozen and cannot be modified after initialization.
They include the current chain’s id and the native token.

The gas usage for each supported chain is stored in a Map<u32, u128>. Since only
32 chains are supported, a simple array may be preferable.

The secondary validators are stored in a Map<BytesN<65>, bool>, enabling the smart
contract to check whether a validator is in the set in constant time. However, the
bool value is never read and can be replaced with the unit type (), since only
membership is checked (i.e. this is a HashSet and not a HashMap).

The list of supported chains is stored as a bitfield, with values ranging from 0 to
31, but stored in a BytesN<32>, with one byte per bit. Consider using a u32 instead
for cheaper storage.

All the methods modifying Instance-level storage require the contract to be initialized (i.e. the
Admin field must be set) and the authorization from the configured admin. They simply per-
form their advertized functionality. They are accompanied by a few getters with no special
functionality either, except get_gas_usage which returns 0 when the field is not set.

3.3.3 Permissioned functionality
The initialize method can be called only when the “Config” field in Instance storage is not
set. Since the TTL of the contract instance and all globals are tied together, there is no risk of
this field expiring before the contract instance.

This method subsequently set all the Instance-level storage of the smart contract (see 3.3.2).

Ref.: 24-01-1500-REP 12 Quarkslab SAS

The initialize method should be called first, and the contract should not be called
unless a trusted party has called this function successfully.

All the functions in contracts/messenger/src/methods/admin require the contract to be ini-
tialized, and the authorization from the configured admin. They are for the most part simple
setters, except withdraw_gas_tokens. They include:

• set_admin,
• set_gas_oracle,
• set_gas_usage,
• set_other_chain_ids,
• add_secondary_validator,
• remove_secondary_validator, and
• set_primary_validator.

withdraw_gas_tokens transfers an arbitrary amount of native tokens to the provided address.
These tokens are received in send_message and are the cumulative estimated cost of the trans-
actions to bridge. As long as the estimated transaction costs remain fair, this method does
indeed allow an admin to withdraw the funds required to bridge the transactions. A malicious
admin could raise the estimated transaction cost using the gas oracle, collecting more funds
than necessary.

3.3.4 Permissionless functionality
send_message lets users request the bridge to perform a transaction on another chain.

The message must be 32 bytes long, with the first two bytes specifying the origin and
destination chain by id. The messenger verifies these values against Config::chain_id (frozen)
and Config::other_chain_ids. Only chain ids up to and including 31 are supported.

The messenger verifies that the sender did not already send the same message to prevent
replay attacks. This is achieved by storing the current ledger sequence in Persistent storage at
a key determined by the hash of the (message, sender) pair.

Persistent storage expires after some time, enabling a user to send the same message
multiple times.

receive_message lets users request the bridge to execute a transaction coming from another
chain. The message needs to be signed by the primary validator and any one of the secondary
validators.

The message is then saved to Persistent storage.

The Message structure stores unnecessary value: true in DataKey::ReceivedMessage. This
can be verified by removing the unnecessary details from the code.

Ref.: 24-01-1500-REP 13 Quarkslab SAS

--- a/contracts/messenger/src/storage/message.rs
+++ b/contracts/messenger/src/storage/message.rs
@@ -37,7 +37,7 @@ impl Message {

#[allow(dead_code)]
pub fn has_received_message(env: &Env, message: BytesN<32>) -> bool {

let key = DataKey::ReceivedMessage(message);
- let result = env.storage().persistent().get::<_, bool>(&key).is_some();
+ let result = env.storage().persistent().get::<_, ()>(&key).is_some();

if result {
Self::extend_ttl(env, &key);

}
@@ -46,7 +46,7 @@ impl Message {

pub fn set_received_message(env: &Env, message: BytesN<32>) {
let key = DataKey::ReceivedMessage(message);

- env.storage().persistent().set(&key, &true);
+ env.storage().persistent().set(&key, &());

Self::extend_ttl(env, &key);
}

INFO INFO-3 Superfluous storage DataKey::ReceivedMessage .

Perimeter Messenger

Description

CWE-561: Dead Code
The boolean stored at DataKey::ReceivedMessage in
contracts/messenger/src/storage/message.rs is never read.

Instead, the smart contract only checks whether the key exists or not.

Recommendation

Remove the dead code.

3.4 Gas oracle

3.4.1 Purpose
The goal is to provide the price of gas on the supported blockchains to the other smart contracts.

The gas price is provided by a trusted account, and anyone can read this price.

3.4.2 Storage
The gas oracle smart contract stores two types of information: the administrator address for
authorization purposes, and the prices of each supported chain.

At the Instance level, the gas oracle only stores the administrator’s address with the symbol
key symbol_short!("Admin").

It also stores the gas price and the token price for each supported chain, with the data key

Ref.: 24-01-1500-REP 14 Quarkslab SAS

https://cwe.mitre.org/data/definitions/561.html

DataKey::ChainData(u32) and a Temporary lifetime. This means that access to expired entries
will result in an error, which is desirable for prices that can quickly become out-dated.

The chain id is a u32. This means the smart contract can technically store data
for chain id up to 232 = 4294 967 296, exceeding the range used by messages (i.e. a
single byte).

The DataKey data structure contains a never-used variant: DataKey::Admin. This can be
verified by removing the variant from the structure declaration.

--- a/contracts/gas_oracle/src/data_key.rs
+++ b/contracts/gas_oracle/src/data_key.rs
@@ -6,5 +6,4 @@
#[contracttype]
pub enum DataKey {

ChainData(u32),
- Admin,
}

INFO INFO-4 Unused variant DataKey::Admin .

Perimeter Gas oracle

Description

CWE-561: Dead Code
The DataKey::Admin variant in contracts/gas_oracle/src/data_key.rs is never used.
Instead, the smart contract uses the symbol_short!("Admin") key defined in
common/bridge_storage/src/admin.rs .

Recommendation

Remove the dead code and simplify the resulting DataKey enum (single variant).

3.4.3 Permissioned functionality
The initialize method can be called only when the “Admin” field in Instance storage is not
set. Since the TTL of the contract instance and all globals are tied together, there is no risk of
this field expiring before the contract instance.

This method simply sets the address of the admin.

The initialize method should be called first, and the contract should not be called
unless a trusted party has called this function successfully.

The set_admin and set_price methods require the contract to be initialized, and the autho-
rization from the configured admin. They are simple setters.

Ref.: 24-01-1500-REP 15 Quarkslab SAS

https://cwe.mitre.org/data/definitions/561.html

3.4.4 Permissionless functionality
Anyone can read the contract storage using get_admin and get_gas_price.

The remaining function perform simple operations on these base values to provide more useful
information. Overflows are not checked explicitely in code, but are enabled in Cargo.toml.

Overflows result in panic! in get_gas_cost_in_native_token and
get_transaction_gas_cost_in_usd.

3.5 Pool

3.5.1 Purpose
The Pool contract provides liquidity to the bridge contract. It allows swapping a supported
stablecoin with a vUSD value in both ways.

vUSD represents a USD value inside the Allbridge Core protocol. This unit does not represent
an on-chain token and is only used between the various bridges deployed by Allbridge.

3.5.2 Storage analysis
The Pool contract uses storage for multiple purposes.

The following table shows the CONTRACT_DATA ledger entries and their associated storage type.

Entry name Storage type Value stored

Admin Instance Address of the administrator

Bridge Instance Address of the bridge contract

Pool Instance Pool’s data and settings (reserves, fees, …)

ClaimableBalance Persistent Balance of claimable stablecoin associated to an ad-
dress

UserDeposit Persistent Liquidity provider’s shares and paid rewards associ-
ated to an address

The storage configuration is well-defined and follows the best practices detailed in the official
Soroban documentation.

3.5.3 Contract initialization
The pool-initialize in the Makefile shows the following parameters values:

Ref.: 24-01-1500-REP 16 Quarkslab SAS

Initialize parameter Value Interpretation

admin Admin address The administrator address of the Pool
contract

bridge Bridge contract address The bridge contract allowed to per-
form swap in the Pool

a 20 Amplification coefficient used in Pool
calculations

token Token address The stablecoin contract supported by
the Pool

fee_share_bp 10 Swap fee represents 0.1% of swapped
amounts

balance_ratio_min_bp 0 The minimum ratio between token
balance and vUSD balance

admin_fee_share_bp 10 Administrator fee represents 0.1% of
swap fees

The current admin_fee_share_bp value indicates that 0.1% of swap fees are allocated to the
administrator. This percentage does not seem to be consistent with the configuration of existing
Allbridge pools. For example, on Ethereum the administrator fee represents 20% of swap fees.

INFO INFO-5 Admin fees seem to be incorrect

Perimeter Pool (initialize)

Description

The current configuration indicates that 0.1% of the total collected fees are allocated to the
administrator. This configuration is likely incorrect.

Recommendation

Verify that the default admin_fee_share_bp value configured in the Makefile is correct.

3.5.4 Liquidity providing mechanism
The Pool contract requires a substantial stablecoin liquidity to guarantee successful funds bridg-
ing. To collect this liquidity, users are encouraged to deposit stablecoins in return for rewards.

Depositing stablecoins

Users can deposit stablecoins using the deposit function to increase their deposit amount.

This function transfers an amount of stablecoin from the sender to the Pool contract, calcu-
lates the increased balance in both stablecoin and vUSD liquidity.

It then updates the d variable which represents total liquidity in the Pool and calculates the
liquidity difference between the new d and the old d liquidity.

Ref.: 24-01-1500-REP 17 Quarkslab SAS

Finally, this difference in liquidity is added to the UserDeposit structure associated to the
sender address.

INFO INFO-6 Multiple casting from u128 to i128

Perimeter Pool (deposit)

Description

Multiple u128 variables are cast to i128 using the as keyword. This casting may silently
overflow.

Recommendation

Consider checking for overflow/underflow when casting operations are performed.

Claiming rewards

The claim_rewards function allows liquidity providers (users who have deposited liquidity into
the pool) to collect their earned rewards.

As part of the fee, the total amount of rewards allocated to liquidity providers increases
during swap operations.

When a user claims their rewards, a computation is performed to determine the reward this
user is due. This computation involves multiplying the amount of liquidity shares the user holds
(i.e. LPamount) by the reward amount per share. From the result of this multiplication, the
amount of rewards already paid to the user is then deducted to determine the net amount to be
sent to the user.

Finally, the determined net amount is paid to the user and the amount of rewards already
paid is updated.

Withdrawing stablecoins

Liquidity providers can withdraw the liquidity they previously deposited by calling the withdraw
function.

This function reduces the amount of liquidity shares held by the sender. It achieves this by
modifying the UserDeposit structure linked to the user address and updating the total liquidity
d. An amount of stablecoins is calculated from the liquidity amount to withdraw and the sender’s
accumulated rewards.

Finally, the determined amount of stablecoin is transferred from the pool to the sender
address.

3.5.5 Swapping mechanism
The swapping mechanism allows the conversion between vUSD and the selected stablecoin, and
conversely.

vUSD serves as a core internal unit within the Allbridge Core protocol. It acts as a medium
to represent transferred funds across the multiple bridges operating on supported networks. It’s

Ref.: 24-01-1500-REP 18 Quarkslab SAS

crucial that external users are restricted from altering vUSD amounts.

Within the Allbridge Core protocol, only the bridge can swap stablecoin and vUSD. The
Pool’s swap functions are designed with access controls to ensure that the only authorized caller
is the bridge.

Swapping from stablecoin to vUSD

The pool contract implements the swap_to_v_usd function. This function swaps an amount of
stablecoin tokens to a vUSD value. This is mainly used when funds are bridged from the Soroban
environment to other networks.

Only the bridge contract is allowed to call the swap_to_v_usd function. This access control
ensures that users can’t directly interact with the swap mechanism. This function correctly
implements access control to exclusively authorize the address stored in the Bridge storage.

In most cases, the stablecoin’s decimals (i.e. default is 7 in Soroban) will be greater than the
vUSD decimals (i.e. 3). This may lead to users losing a negligible portion of stablecoin during
each swap.

Swapping from vUSD to stablecoin

The pool contract implements the swap_from_v_usd function. It allows the bridge to swap vUSD
to stablecoin tokens. This is mainly used when funds are bridged from other networks to the
Soroban environment.

Only the bridge contract is allowed to call the swap_from_v_usd function. This access control
ensures that users can’t directly interact with the swap mechanism. This function correctly
implements access control to exclusively authorize the address stored in the Bridge storage.

withdraw includes two ways to distribute the bridged funds using a claimable boolean input.
When set to false, bridged funds are directly transferred to the receiver address. When set to
true, the bridged funds amount is stored in a ClaimableBalance structure linked to the receiver
address. Then, the claim_balance function allows to transfer the amount from the pool to the
receiver address.

3.5.6 Administration functionalities
Several functions in the contract are defined to allow the administrator of the contract to modify
configuration variables.

Ref.: 24-01-1500-REP 19 Quarkslab SAS

Function name Action Access control

set_fee_share Set the fee percentage taken on each
swap

Admin

adjust_total_lp_amount Updates internal variables with current
balances

Admin

set_balance_ratio_min_bp Set the minimum balance ratio between
stablecoin and vUSD

Admin

stop_deposit Deactivate liquidity deposits StopAuthority

start_deposit Activate liquidity deposits StopAuthority

stop_withdraw Deactivate liquidity withdrawals StopAuthority

start_withdraw Activate liquidity withdrawals StopAuthority

set_stop_authority Set the StopAuthority address Admin

set_bridge Set the Bridge address Admin

set_admin Transfer administration permissions to
a new address

Admin

set_admin_fee_share Set the percentage of fees allocated to
the Admin

Admin

claim_admin_fee Claim the collected administrator fee Admin

The administrator is able to modify the bridge address. The bridge address is allowed to
perform swaps from vUSD values to a stablecoin amount. The administrator is able to drain
part of the Pool liquidity by setting his own address as the bridge address and executing swaps
using the swap_from_v_usd function.

MEDIUM MED-1 Admin can drain stablecoin liquidity

Likelihood Impact

Perimeter Pool (set_bridge)

Prerequisites Admin role

Description

The administrator can drain stablecoins deposited in the Pool by modifying the Bridge
address and executing a swap using swap_from_v_usd .

Recommendation

There are several ways to mitigate this issue.

For example, a consensus mechanism would limit the amount of trust in the admin.
Enforcing a grace period when updating critical parameters gives time to users and develop-
ers to react in case of compromise.

Ref.: 24-01-1500-REP 20 Quarkslab SAS

set_fee_share, set_admin_fee_share and set_balance_ratio_min_bp enable the administra-
tor to modify percentage-type settings of the pool. Each function is lacking input sanitization
to ensure that the new setting is a valid percentage.

LOW LOW-1 Lack of input sanitization in admin functions

Likelihood Impact

Perimeter Pool (setters)

Prerequisites

Description

Multiple variables set by the administrator are percentage. But the setter functions lack
input sanitization to ensure that the values are not greater than 100%.
Affected functions include set_fee_share , set_admin_fee_share and
set_balance_ratio_min_bp .

Recommendation

Percentage parameters should be lower than or equal to Pool::BP .

A patch addresses the issue by incorporating a require statement into the impacted functions.
It is available in the Appendix section.

3.5.7 View functionalities
The contract implements multiple view functions.

Function name Action

pending_reward Returns the pening rewards associated to the user address
parameter

get_pool Returns the Pool storage structure

get_admin Returns the Admin address

get_stop_authority Returns the StopAuthority address

get_bridge Returns the Bridge address

get_user_deposit Returns the UserDepost structure associated to the user
address parameter

get_claimable_balance Returns the u128 clamable amount associated to the user
address parameter

These functions are publicly callable and do not implement any access control mechanism.

Ref.: 24-01-1500-REP 21 Quarkslab SAS

A. Smart contract interface

A.1 Host functions (import section)

In the import section, the host functions appear as 2 characters separated by a dot. This is done
to optimize the binary size. The first character is the host module name. The second character
is the name of the function inside this module. The correspondence between the compressed
1-character names and the full names can be found in Soroban’s env.json file.

For readability reason, we translated these names in the table below.

Function name Bridge Messenger Gas oracle Pool

address.authorize_as_curr_contract 3

address.require_auth 3 3 3 3

buf.bytes_copy_from_linear_memory 3

buf.bytes_copy_to_linear_memory 3 3

buf.bytes_get 3 3

buf.bytes_len 3 3

buf.bytes_new 3

buf.bytes_new_from_linear_memory 3 3

buf.bytes_put 3 3

buf.serialize_to_bytes 3 3

buf.symbol_new_from_linear_memory 3 3 3 3

call.call 3 3 3

context.contract_event 3 3 3

context.get_current_contract_address 3 3 3

context.get_ledger_sequence 3

context.obj_cmp 3 3

crypto.compute_hash_keccak256 3 3

crypto.recover_key_ecdsa_secp256k1 3

Ref.: 24-01-1500-REP 22 Quarkslab SAS

https://github.com/stellar/rs-soroban-env/blob/main/soroban-env-common/env.json

Function name Bridge Messenger Gas oracle Pool

int.obj_from_i128_pieces 3 3 3

int.obj_from_u128_pieces 3 3 3 3

int.obj_to_i128_hi64 3

int.obj_to_i128_lo64 3

int.obj_to_u128_hi64 3 3 3 3

int.obj_to_u128_lo64 3 3 3 3

int.u256_val_to_be_bytes 3

ledger.extend_contract_data_ttl 3 3 3 3

ledger.extend_current_contract_instance_and_code_ttl 3 3 3 3

ledger.get_contract_data 3 3 3 3

ledger.has_contract_data 3 3 3 3

ledger.put_contract_data 3 3 3 3

map.map_del 3

map.map_get 3 3

map.map_has 3 3

map.map_new 3 3

map.map_new_from_linear_memory 3 3 3 3

map.map_put 3 3

Total (40) 37 33 14 19

Ref.: 24-01-1500-REP 23 Quarkslab SAS

A.2 Exposed functions (export section)

Function name Bridge Messenger Gas oracle Pool

_ 3 3 3 3

add_bridge_token 3

add_pool 3

add_secondary_validator 3

adjust_total_lp_amount 3

claim_admin_fee 3

claim_balance 3

claim_rewards 3

crossrate 3

deposit 3

get_admin 3 3 3 3

get_another_bridge 3

get_bridge 3

get_claimable_balance 3

get_config 3 3

get_gas_cost_in_native_token 3

get_gas_oracle 3 3

get_gas_price 3

get_gas_usage 3 3

get_pool 3

get_pool_address 3

Ref.: 24-01-1500-REP 24 Quarkslab SAS

Function name Bridge Messenger Gas oracle Pool

get_price 3

get_sent_message_sequence 3

get_stop_authority 3 3

get_transaction_cost 3 3

get_transaction_gas_cost_in_usd 3

get_user_deposit 3

has_processed_message 3

has_received_message 3 3

has_sent_message 3

initialize 3 3 3 3

pending_reward 3

receive_message 3

receive_tokens 3

register_bridge 3

remove_bridge_token 3

remove_secondary_validator 3

send_message 3

set_admin 3 3 3

set_admin_fee_share 3

set_balance_ratio_min_bp 3

set_bridge 3

set_fee_share 3

Ref.: 24-01-1500-REP 25 Quarkslab SAS

Function name Bridge Messenger Gas oracle Pool

set_gas_oracle 3 3

set_gas_usage 3 3

set_messenger 3

set_other_chain_ids 3

set_price 3

set_primary_validator 3

set_rebalancer 3

set_stop_authority 3 3

start_deposit 3

start_swap 3

start_withdraw 3

stop_deposit 3

stop_swap 3

stop_withdraw 3

swap 3

swap_and_bridge 3

swap_from_v_usd 3

swap_to_v_usd 3

withdraw 3

withdraw_bridging_fee_in_tokens 3

withdraw_gas_tokens 3 3

Total (64) 28 20 10 27

Ref.: 24-01-1500-REP 26 Quarkslab SAS

B. Proposed fixes

B.1 Bridge - Insecure pattern
--- a/contracts/bridge/src/methods/public/swap_and_bridge.rs
+++ b/contracts/bridge/src/methods/public/swap_and_bridge.rs
@@ -34,6 +34,10 @@ pub fn swap_and_bridge(

let token_bytes = address_to_bytes(&env, &token)?;

+ // Check that a pool is associated to token
+ let config = Bridge::get(&env)?;
+ config.pools.get(token_bytes.clone()).ok_or(Error::NoPool)?;
+

let fee_token_amount_in_native =
convert_bridging_fee_in_tokens_to_native_token(&env, &sender, &token,

fee_token_amount)?;↪→

B.2 Pool - Percentage input sanitization
--- a/contracts/pool/src/methods/admin/config_pool.rs
+++ b/contracts/pool/src/methods/admin/config_pool.rs
@@ -1,5 +1,5 @@
use bridge_storage::*;

-use shared::{soroban_data::SimpleSorobanData, Error};
+use shared::{require, soroban_data::SimpleSorobanData, Error};
use soroban_sdk::Env;

use crate::storage::pool::Pool;
@@ -7,6 +7,11 @@
pub fn set_fee_share(env: Env, fee_share_bp: u128) -> Result<(), Error> {

Admin::require_exist_auth(&env)?;

+ require!(
+ fee_share_bp < Pool::BP,
+ Error::InvalidArg
+);
+

Pool::update(&env, |pool| {
pool.fee_share_bp = fee_share_bp;
Ok(())

@@ -16,6 +21,11 @@
pub fn set_balance_ratio_min_bp(env: Env, balance_ratio_min_bp: u128) ->

Result<(), Error> {↪→

Admin::require_exist_auth(&env)?;

+ require!(

Ref.: 24-01-1500-REP 27 Quarkslab SAS

+ balance_ratio_min_bp < Pool::BP,
+ Error::InvalidArg
+);
+

Pool::update(&env, |pool| {
pool.balance_ratio_min_bp = balance_ratio_min_bp;
Ok(())

@@ -25,6 +35,11 @@
pub fn set_admin_fee_share(env: Env, admin_fee_share_bp: u128) -> Result<(),

Error> {↪→

Admin::require_exist_auth(&env)?;

+ require!(
+ admin_fee_share_bp < Pool::BP,
+ Error::InvalidArg
+);
+

Pool::update(&env, |pool| {
pool.admin_fee_share_bp = admin_fee_share_bp;
Ok(())

--- a/contracts/pool/src/methods/internal/pool.rs
+++ b/contracts/pool/src/methods/internal/pool.rs
@@ -7,7 +7,7 @@
impl Pool {

const MAX_TOKEN_BALANCE: u128 = 2u128.pow(40);
- const BP: u128 = 10000;
+ pub const BP: u128 = 10000;

pub const P: u128 = 48;
const SYSTEM_PRECISION: u32 = 3;

Ref.: 24-01-1500-REP 28 Quarkslab SAS

	Project Information
	Executive Summary
	Context
	Objectives
	Methodology
	Disclaimer
	Findings Summary
	Recommendations
	Fixes

	Manual Review
	Compilation
	Bridge
	Purpose
	Storage
	Permissioned functionality
	Permissionless functionality
	Authorization framework attack vector

	Messenger
	Purpose
	Storage
	Permissioned functionality
	Permissionless functionality

	Gas oracle
	Purpose
	Storage
	Permissioned functionality
	Permissionless functionality

	Pool
	Purpose
	Storage analysis
	Contract initialization
	Liquidity providing mechanism
	Swapping mechanism
	Administration functionalities
	View functionalities

	Smart contract interface
	Host functions (section)
	Exposed functions (section)

	Proposed fixes
	Bridge - Insecure pattern
	Pool - Percentage input sanitization

